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ABSTRACT

The performanc, of a modified linear Kalman filter with

adaptation is compared with that of a common adaptive

alpha-beta filter for state estimat on of a pilot

" ccntrolled, ground directed bombing syst.e. Of particular

concern is the accuracy and response of the alternative

filters when the aircraft conducts random maneuvers in the

vicinity of the target. The desirablity of including

deterministic forcing in the filter model is discussed and a

technique utilizing an adaptive Kalman identifier to

establish the pilot response to ground control heading

commands is presented.
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The ground directed bombing system simulated is

conceptually similar to the USHC AN/TPB-1D produced by

Sierra Research Corporation. This system tracks the

tactical aircraft with a conical scan radar, filters the

noisy radar data, calculates heading commands based on the

smoothed trajectory, and transmits this guidance information

to the pilot via the Tacan navigation system located in the

cockpit. This heading information directs the pilot to fly

the aircraft so that its ground track vector passes through

the calculated ordnance release point. Audio signals

transmitted to the pilot designLte the bomb release time.

In an operational environment such a system would

possibly be required to track and guide aircraft conduczing

significant maneuvers enroute to the target. These

maneuvers Yould most likely be dictated by tactical doctrine

or by the threat environment.

With this operational model in mind an appropriate

concern is the capability of a grcund directed bombing

d system to track and guide an aircraft exhibiting random

maneuvers until moments prior tc bomb release. It is

obvious that the smoothing filter should be able to respond

9
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to maneuvers, yet settle quickly to an accurate solution as

the pilot steadies the aircraft. These conflicting

requirements are investigated utilizing both alpha-beta and

Kalman filtering techniques.

Similar filtering techniques were utilized for a

simulation of the USMC &N/TPQ-27, [I]. However in that

ground directed bombing system, control signals were

directly coupled to the aircraft aerodynamic controls, thus

eliminating the uncertainty of pilot response in the control

loop. In that study significant improvements in filter

response and accuracy were realized b- including

deterministic forcing autopilot commands in the state

.estimation via the Kalman filters.

10



.. .. ................. . .:

I1. GROUND DIRECT! C BOMBING SYSTEM (GDBS) SIMULATION

A. COORDINATE SYSTEMS

A Cartesian coordinate system was chosen for the

aircraft dynamics model and a radar centered inertial

reference frame. In this reference system the y-axis is

directed toward true North and the x-axis toward the east.

The z-axis is directed away from the center of the earth.

All radar measurem4nts of aircraft position, however, are

obtained in spherical polar coordinates, i.e. slant range

(R), azimith angle from true North (A), and elevation angle

(E) from the horizontal. Figure 2.1 shows these coordinate

- systems and their transformation relationship. Wind is

modeled with a constant velocity in the x-y plane with no

ver-tical component.

Curvature of the earth and the fact that pilot heading

information is oriented to magnetic north, were not taken

into account in the simulation. Also bomb ballistics and

therefore coriolis forces were not included in the mole!.

The aircraft is simply directed to a release point in spacq,

which in a full simulation would be derived from the

projec-ed bomb :rajctory ,ballistic winds, coriolis forces,

and a number of other factors, ill of which are important to



z

I

R

E7 Y

A North

px

x - R Cos(E) sin(A)
SX East

y = R cos (E) cos (A)

z = R sin(E)

Fig. 2.1. Model Simulation Coordinate Systems
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the problem as a whole but are not necessarily germane to

the objective of evaluating the response and accuracy of

alternative state estimating filters for a goal oriented

maneuvering bomber. Thus the simulat-ion has been simplified

appropriately.

B. AIRCRAFT DYNAMICS MODEL

The dynamic model of the aircraft for the purpose of

simulation was assumed to be a free inertial (1/2) plant

since the bombing profile dictates a constant aircraft

airspeed. The discrete realization of this plant is shown

in (2. 1).

X(kl) = q(k+1/k)I(k) + A(k+l/k)t(k) (2.1)

where

1 T 0 0 0 0

' 010000

001 TOO

0(k+l/k) = 0 0 0 1 0 0 (2.2)

0 0 0 0 1T
000001

13



T32 0 0

T 0 0

o T2/2 0
&(k+lA) * 0 T 0 (2.3)

0 0 T '2
o 0 T

It the controlled mode the aircraft model simulates the

pilot responding to heading inputs transmitted from the

radar site to the TACAN navigation system in the cockpit.

The model is driven by a pilot/aircraft control function

similar to that developed in E1] and shown in Figure 2.2.

The input is bearing to the target and the output is a bank

angle which generates a heading rate that can be transformed

- into x-y a-.coleration components for entry into the dynamic

model. it is assumed that in the controlled mods heading

changes are made w-4za coordinated turns performed by the

pilot in response to heading commands displayed by the

TACAN. The pi4lot/ai-rcraft controller induced X-Y

4accelerations are depicted in Figure 2.3 and summarized by

(2.4) and (2.5) be.low.

i (k) V V(k) c os (k&(k)fl t(k) (2. 4)

j(k) -V(k) s in t(k))4ck) (2.5)

14
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IFigure 2.4. The aircraft weight is shown in (2.6) below.

W 3 g =L cos9 (2.6)



W -4

a-

%Y

-a-

!x

i-~
x

Fig. 2.3. Pilot Induced I-T Iccelerations

Equation (2.7) depicts the centripetal force generated in a

turn, where R is the turn radius, L is lift, V is velocity,

and 9 is the bank angle.

P = VR= L sine (2.7)

But V/R =' ,the turn rate, so

P =2v L sine (2.8)

16



n mine

%P

,COS#

Fig. 2.4. Coordinated Turn Free-Body Diagram

Dividing (2.8) by (2.6) and rearranging terms yields (2.9),

which defines , .he aircraft turn rate, as a function of

aircraft bank anglef, and velocity V.

= g/V tang (2.9)

From [11 the aircraft roll response is assumed to be of

the form shown In (2.10) where T is the roll response time

constant.

17



--- *1/(sG 1)(2.10)

No effort has been made to specifically model pilot delays

or response to visual inputs from the TACAN.

In the maneuvering mode the maneuver model described in

[2] was used and is shown in Figures 2.5 and 2.6

P(a)

PO
PlP

Fig. 2.5. Acceleration Probability Density Model

This was simulated for uncontrolled random flight since the

aircraft is assumed to typically move at a constant velocity

with turns, evasive maneuvers, and air turbulence

interpreted as perturbations upon the constant velocity

trajectory. These maneuver perturbations or accelqrat'ons

18



R(a)

M

-A 0 A

Fiq. 2.6. Hodel Acceleration Correlation Function

can be specified by a magnitude,' with probability P(a) from

(2.11), and duration of R(a) from (2.12), the correlation

functicn of aircraft acceleration.

P(a) *(1-(2P, + P0 ))/2A (2.11)

41 R(a) = xp(-tlaI) (2.12)

The acceleration A in (2.11) is the maximum that can

reasonably be expected frem the pilot/aircraft in the

environment described. P1 is that probability assigned to

the maximum acceleration tA, PO is that probability assigned

19



to no maneuver, and the assumed probabilitity distribution

between these values is uniform with amplitude P (a).

Equation (2.12) is the correlation function whch yields an

acceleration time duration, R (a), which is based on the

,. magnitude of the acceleration lal. M and t are simply

correlation factors which determine how the R(a) varies over

the range of possible acceleration amplitudes. From this

model one can see how the duration of a high G maneuver for

threat avoidance would be considerably less than for a low G

clearing turn.

C. GDBS MODEL IMPLEMENTATION

The GDBS model was simulated on an IBM 370 in single

precision Fortran. Figure 2.7 shows the basic flow diagram

for -he computer program, which implements this simulation

model. The module labeled 'State Estimation Filterl

represents those filter algorithms discussed in the next

chapter.

20



--- Set Proqraa Const.

"" and Initialize

~Variables

Initialize A/C

State Vector

(X,Y,Z)

<< i Radar Measurements

in Polar Coord. I

L (R A ,E )

Add White, 0-Mean

Gaussian Noise to

Polar Measurements

I Transform Polar

Coord. to Radar

LCartesian Coord.

State Estimation
.l- Filte r  ( ' , ,Z)

Target Bearing

Provided to A/C
/ lBased on State Est.

Control Law No IsYes Mnue a
Provides X-Y Manuvering Provides X-

AAcceleration to
Dnamic Model Dynamic Model

Fig. 2.7. GDBS Model ?low Diagram
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A. BACKGROUND

k great deal has been written on the theory and

application of estimation filters. In particular, (2]

provides a good overview of several such filters, including

the alpha-beta and Kalman filters, and compares their

*relative performance not only in terms of accuracy and in

response, but also in terms of computer implementation costs

in computation time and storage overhead.

The general conclusion is that the Kalman filter

out-performs an alpha-beta filter of comparable order by

about 2 to 1. However, the c-ost for such perfcrmanc. Is

increased computer computation time and memory, of the same

*relative magnitude.

B. GENERAL DESRIPTION OF THE ALPHA-BETA FILTER

The basic t-heory of the alpha-beta filter is derived

from minimizing the mean square error of the filtered

*states. A classic analysis of the alpha-beta filter is

prcvided by (3]. The filter recursive equations are

summarized below.

x(k/k-1)zx (k-i/k-i) + T i(k-1/k-1) (3.1)

22
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x (k/k) =x (k/k-i + a(z(k) - x(k/k-1) (3.2)

(k/k) (k/k-i) + P/T (z(k) -x(k/k-1)) (3.3)

x (k/k-1) is the predicted position, X(k/k) is the updated

position, i(k/k) is the updated velocity, and z(k) is the

noise contaminated measurement of position at the k-th

interval. T is the sample rate of the measurement process,

a and 9 are usually fixed real constants. As pointed out in

( 4 1 these alpha-beta equations are analogous to a steady

state Kalman filter. For typical parameter values the

alpha-beta filter is simply low pass with a heavily damped

time response. Thus the filter eliminates not only most

high frequency measurement and process noise, but also most

maneuver energy from the state estimate.

C. GENERAL DESCRIPTION OF THE KALMAN FILTER

The Kalman filter generates a minimum variance estimate

of the plant(aircraft) state vector when the measuremer.t and

plant process noise statistics are known and confcrm to the

A1 criteria shown below.

i:E(V(k)V(j) ) = R(k) 6(kJ) (3.4)

23' I



T T Qk)(k)

R(A((k) V(J) QA ) ( J) (3.5)

I (V(k)W{J)T) 0 for all kj (3.6)

F0 k~j
where 5(k,J) I k-j (3.7)

1 linear time-invariant systam is assumed, as in the

discrete model representation shown in Figure 3.1. X(k)

represents the (n x 1) state vector, Z(k) the (m x 1) output

vector, #(k) the state transition matrix, H(k) the (m x n)

observation matrix, W(k) state excitation or process noise,

and V(k) the measurement noise.

The Kalman filter recursion algorithm is summarized

below.

X (k+ 1) = 6(k) X (k) + A(k) W (k) (3.8)

Z(k) = H(k)X(k) + V(k) (3.9)

SA A
X (k/k-i) =(k,k-1) (k-1/k-i) + A(k)U(k-i) (3.10)

24&



Dynamic Model Measurement model1

Z (Ic)Kalman Filter
Z'k

I Ik

P~kk-) (k k)(k-1k)k-1 -1 0 W~) (.1

G (k) P P(k/k- I) H(k) 1H (k) P(k/k- 1) H(k )T + R(ki (3.12)

25



"(k/k) z 2(K/K-1)+G(k) (k) - (k I (kA-1 (3.13)

P(k/k) = (I- G(k)B(k))P(k/k-1) (3.14)

(k/k-l) denotes the estimate of the state vector X(k) based

on (k-i) measurements, Z(1),Z(2), ..... Z(k-1).

D. FILTER ORDER CONSIDERATIONS

The filter order is chosen to match as. closely as

possible the expected plant dynamics of the system being

modeled. A first order filter would be expected to estimate

a constant velocity trajectory effectively and a second

crder filter would accordingly observe a trajectcry

exhibiting constant acceleration. The o-der is used here in

the mathematical sense and refers to the order of the

differential equation that defines the filter.

Since the aircraft is known to be constrained to a

constant velocity profile as it approaches the release

point, it would seem reasonable to select a first o:der

filter for modeling. The aircraft dynamics are anticipated

*4 to depart from the first order model enroute to the target

thus creating transient errors which must be dealt with by

filter adaptation. The alternative to this strategy is to
I

26
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increase the order of the filter to observe these high

energy maneuvers for state estimation. However, the

settling time of a first order filter is generally less than

that of a second order filter as discussedrnC5] and

graphically illustrated by the first and second order Kalman

gain schedules shovn in Figures 3.2 and 3.3 respectively.

1.0

0.8

cr
CE 0.6

IO

0.4

0.2

0.0

0. 5. 10. 15. 20. 25.

TIME (SEC)

Fig. 3.2. First order Kalman Gain schedule
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1.0

: . 0.8

C.D 0.6

- 0.14
Q-

0.2

0 .0 . . . j . . . . .

0. 5. 10. 15. 20. 25.

TIME(SEC)

Fig. 3.3. Second Order Kalman Filter Gain Schedule

4E. FILTER ADAPTATION

1. Background

No matter what the order or the complexity of the

* filter type selected, it cannot be expected to fully mcdel

the aircraft dynamics and process noise covariance. The

model is based on a. linear timr-invariant sys .em and the

28



process noise is assumed to be stationary, white, and

Gaussian. During portions of the flight, paricularly as the

aircraft approaches the release point, the system dynamics

are expected to approximate very closely the assumed model.

However, during other portions of the flight the aircraft

dynamics are anticipated to depart significantly from the

filter model. Certainly the pilot should not be constrained

to behave in a manner consistent with the model, if the

* environment dictates otherwise.

Since the pilot/aircraft dynamics are not fully

modeled, the suboptimal filter that results might be

expected to diverge, e.g. the error covariance generate by

the filter and the actual error covariance become

inconsistent. The desire is for the filter to transition

smcothly between accurate estimations, when the aircraft

dynamics conform to those assumed for the model, and less

accurate estimations, when the aircraft dynamics do not

agree with the model. An adaptive fl-:er realizes -this

smooth transition by adjus-ing filter parameters to vary the

filter bandwidth to allow a more consistant match between

the calculated and actual filter error covariances.

29
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In the case of Kalman filter adaptation, the

calculated error covariance becomes a function of the

* measured data indirectly by making the filter parameters

dependent on the observed aircraft motion. The adaptive

techniques for the alpha-beta filter are similar in concept.

In either case the adaptive process is conceptually straight

forward; first divergence is detected, then the filter

parameters are modified.

In the case of a ground directed bombing system of

the type considered here, the aircraft's behavior could

depart from the filter model in a random fashion when the

pilot maneuvers in response to a random event i. the

environment, or deterministically when he responds to target

bearing inputs from the ground radar. These two situations

may be treated separately or together for the purpos-. of

filter adaptation. To treat them separately, as random and

deterministic processes, requires knowledge of the

pilot/aircraft response to target bearing inputs. In the

case of the ground directed bombing system described in (1]

this transfer function was known quite accurately since the

input signals from -he ground radar were directly coupled -o

the aircraft aercdynamic controls, with the uncertainties of

30
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pilot response sotdfrmtecnolop. With that

information the deterministic forcing could simply be

integrated into the filter model. Unfortunately such is not

the case f1or this simulation. A unique approach to this

problem will be discussed later. The alternative approach

is to consider both processes to be random and prcceed from

that assumption.

2. Innovations Statistics and Maneuver Detection

As descibed in (5] the innovations or residual

sequence of a filter can be obsqrved in order to detect a

tias that would indicate divergence of the state estimate

from the true state. This is given by

A

v(k/k-1) =Z(k) - H(k)X(k/k-1) (3.15)

By substituting for Z(k) from (3.9) , the measurement model,

we see that

v(k/ k- 1) v v(k) H H(k) (k/k- 1) (3.16)

where

A

E(k /k-1) =X(k/k-1) -X(k) (3.17)

Taking expected values , we find that

E(L'(k/k-1)) =0 (3 .l 1

31



,(v(k/kll TlkA.-1)) = R(k) H(k)P(k/k-l)RT (k) (3.19)

Thus by referring to the model statistics for R(k) and

P(k/k-1), it becomes clear that when the system conforms to

the system model, i.e. the filter is operating optimally,

the innovation sequence should be zero-mean Gaussian with

variance

"0 2 k) + P(k/k-1) (3.20)

One appraoch to adaptation considers the correlation

of the innovation sequence, where the autocovariance

Tn 9(i) = (tk/k-I) v(k-i/k-l-i)T ) (3.21)

should vanish for i;0. Based on these statistics, maneuver

detection can be realized by observing the signs of the

innovation sequence. The probability that a given sequence

is either positive or negative is

P( 0 >V > 0) =  N  (3.22)1-N

Another approach utilizes (3.23)

O N (k)j > C or- (k) (3.23)

to declare a maneuver when 1 N exceeds a specified vallz,

usually two or three standard deviations of q.
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Subsequent to maneuver detection, the filter

parameters must be modified to correct filter divergence.

Reference (51 summarizes numerous techniques, some being

quite complex and computation intensive. The strategy

chosen for this simulation was simply to reset the e:ror

covariance in response to a detected maneuver. In the

situation of a ground directed bombing system, the resulting

cost of a false detection becomes high only as the aircraft

approaches the release point. This cost can be reduced by

disabling filter adaption within a specified time to go.

Still ancther approach attempts to adapt the filter

bandwidth by adjusting Q(k) in (3.11). This approach,

investiqated in [11 and [6] calculates Q(k) by

Q(k) = a Del(k) Del(k) + b Del(k-l)Del(k-I) (3.24)

where a and b are dctermined by data analysis, and

A
Del(k) = X(k/k) - 2(k/k-1) (3.25)

A variation of this technique that looks at only the change

in the highest crder state is investigated in the Kalman

filter simulation.

Nost of the iiscussion thus far concerning filter

adaptation has been directed toward Kalman filters. Most

33



approaches to adapting alpha-beta filter simply open the

bandwith by switching to a different set of parameters when

a maneuver has been detected. Reference (0] discusses an

adaptation scheme that is more nearly optimal in the sanse

of covariance matching. However, for the sake of comparison

the simple parameter switching technique is implemented in

the alpha-beta filter simulation subroutine, since that Is

the approach used in the AN/TPB-1D.

F. ESTIMATION OF PILOT RESPONSE TO TARGET BEARING INPUTS

As discussed in the previous section, aircraft dynamics

depart from the filter model randomly when the pilot

responds to events in the environment and determinstically

when he responds to target bearing inputs from the GDBS. If

his response to these inputs were known with some degre, of

certainty, then deteministic forcing might be included in

the filter model in a manner similar to that found in

and [I]. The importance of identifying parameters which

define a system so that modern control strategiss can be

implemented is discussed in [7]. In this case the

parameters would be those that describe the pilot/aircraft

response to heading inputs.
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By using an Autoregressive Moving Average (ARMA)

representation for the pilot/aircraft system, and Kalman

filtering to process the heading-in(actually heading error

from the veiw point of the pilot), bankangle out data, the

coefficients associated with the ARNA equation could be

identified. From [7] we know that the pilot/aircraft system

can be represented by the ARMA equation

M n
e(k 3. a 8 (k-5) - lb. 0(k-j) (3.26)

where the present bankangle output, 9(k), is a linear

combination of pasz outputs, 9 (k-3) , and of past and

present heading error inputs, 9(k). Estimating the

coefficients of this ARMA equation can be formulated as an

adaptive Kalman identifier, where the heading error and the

bank angle are simple functions of the valocity and

acceleration state estimates generated by the Kalman state

estimation filter previously discussed.

If the a. and b. coefficients of the ARMA equation are

treated as states of the pilot/aircraft system, then the

state vector beccmes

F-b] (3.27)
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We assume that these coefficients experience random

perturbations so that

a (k) a (k) + v(k)3.28

b j (k+ 1) - bj (k) + (k)

Equation (3.26) then becomes

D:m n

8(k) = k- Fb. 0(k- ) + v(k) (3.29)

where w (k), wj(k), v(k) are noise processes that have the

same statistics described for the Kalman filter earlier.

Combining (3.28) and (3.29) we have

S l w (k) (3.30)

The measurment vector is defined,

H (k) [8((k) 0,k-) 9(k-m) -

- (k-) • -e(k-n)] (3.31)

From [7] the solution is then formulated as

-k 1/ G~)~)F k/k-l)1
-k+1G/kJ G (k) 9g (k) (3.32)

where

-1
G(k) = P(k/k-i)}r(k) [ (k) P (k/k-1) HT(k) + R] (3.33)

-4H
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P(k/k) = P(k/k-1) -G(k}H(k)P(k/k-1) + Q (3.34)

(k)"I"Q = S L j lk  W/ (k) w (k) 113.35)

w (k)(

E = [v(k) v(k) ] (3.36)

and

rakk/k k))_P(k/k-i = E - -k (3.37)

Initialization of the states(coefficients) and the e:ror

covariance would be similar to that discussed in the next

section.

G. FILTER IMPLEMENTATIONS

Three separate filter subroutines were developed to

simulate the filtering of raw radar data generated by the

ground radar of the bombing system previously described.

All three filter configurations are oriented in -.he thrse

dimensional Cartesian coordinate system described in Chapter

2 since the aircraft dynamics are assumed to be more nearly

linear and well behaved than in the polar coordinate sys-em

in which the measurements are generated. This aisuarity
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between the measurement reference frame and the model

dynamics reference frame results in a basic nonlinearity

when transformations are required frem one frame to the

other. Probably a better coordinate frame for modeling

aircraft motion would be one that translates with the

aircraft and is oriented along the velocity vector. Such a

coordinate system was found to be very awkward and difficult

to implement, especially considering the problem of the

transformation nonlinearity just mentioned.

The first of these filters, designated ALFBTA, is a

simple sixth order alpha-beta filter with the parameter

switching adaptation tecnique described in the previous

section. Adaption is initiated when a heading rate of 1

degree per second is observed for period of 5 seconds o=

more. The second and third subroutines implement

sixth (KALN1) and n inth (KALI'N2) order Kalman fil-ers

respectively. Two separate adapt've techniques, which were

described in the previous section, are included with each of

these filters. The first of these adaptive algorithas,

designated ADPTV1, adjusts the Q(k) matrix from changes

computed in the highast order estimate. The second

algorithm, designated ADPTV2, simply resets -he covariance

p- 38



of error matrix P(k) when a bias is detected in the

innovations sequence for more than one second. &s mentioned

before, the difference between the sixth and ninth order

filters is that the former do not estimate the acceleration

states of the aircraft. The cost of this additional

information provided by the ninth crder filter is more

computation time and computer memory.

The aircraft model is formed by defining a

three-dimensional Cartesian state vector

X 3 [x y z]T (3.38)

where x, y, and z are each one-dimensional two element state

vectors(position and velocity) for ALFBTA and KALMN1, and

three element state vectors (position, velocity, and

acceleration) for KALMN2. The state prediction equations

are given by (3.1) for the alpha-beta filter ard (3.10) for

both Kaian filters. For the Kalman filter configuration

*(k) = 0 0 (3.39)

0
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A(k) = A (3.40)
0 0A

where *(k) and A(k) are defined by (3.41) and (3.42)1 for

KALEN1 and (3.43) and (3.44) for K&LMN2.

*(k) = [T1 (3.41

A (k) (3[2].42)

0 (k) = (T. 431

TN-

A(k) = T32 (3.44)LTj
0 and A are in general functicns of k, however for

this simulation they are not since a constant data rate is

assumed and no extended predictions are required. The U(k)

matrix would be utilized to include deterministic forcing in

the model, if this information were available as In 1).
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aowever, since an adaptive Kalman identifier was not

implemented to estimate the pilot/aircr-aft response, no

attempt was made to include deterministic forcing in the

model.

1. Kalman Filter Covariance of Measurement Noise. R(k)

Kalman filter theory assumes linear relationships

-  among measurements and states as can be seer. from (3.9).

Since aircraft motion is modeled in a Cartesian reference

frame and measurements are generated in a polar reference

frame, the resulting relationships among the states and

measured values are nonlinear, as can be seen from the

transformation equations shown below.

x = R cos (E) sin (A) (3.45)

y = R Cos(E) Cos(A) (3.46)

i.4
z = R sin(E) (3 .47)

Using these Dolar/Cartesian transformations to

nornlinearly com bin e the polar observations,

th ee-dimensional Cartesian measurements are generated frcm

(3.9) to form (3.48) below.

1
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zx (k) Cou(E) sin(k) x(k)1[ iE ii1
z (k) Cos(E) cos~i + v(k)f (3.48)
zz (k) R sin () z(kU

where the observation matrix for KILNH1 is

H (k) 1(3.49)

and for KALMN2 is

H (k) 8 8 3 8 8 88 (3.50)

In order to compute the measurement error variance

it is necessary to first linearize the measurement error.

Differentiating equation (3.48) with respect to each of the

measurement variables yields (3.51), where s and c represent

sin and cosine respectively.

sAcE rcAcE -rsAsE]
J(x) = FcAcE -rsAcE -rcAsE (3.51)

LSE 0 rcEj

Thus we find that the linearized Cartesian errors can be

expressel as

v J() (3.52)
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Therefore assuming no cross correlation of polar

errors, the linearized Cartesian measurement error

ccvariance matrix is

T

RC(k) * J(x) Rp(k) J(x) (3.53)

The diagonal terms of R (k) are

s2s 2 2 222 2

R (1.1) =r 2 (isE 2 sA 2  + UC C A.) + a2CE sAs (3.54)

R(2,2) r A ) + s'cE2 cA (3.55).

R (3, 31 2 2 E2  02 2 (.6

anddueto hesymetr o R~k.. Oi(,1 =E +(1,2 (3.560)

The o ff- diago'nal elememts'are

R (1, 2) =r2sE 2  2 ~ 2~ - 2 2
E S $A ro )cE sAcA (3.57)

R(13)= 4 rao )sECEsA (3.58)

R(,)+(4-r E cc (3.59).

and due to the symmetry of R(k)

R(2,1) = R(1,2) (3.60)
R(3,1) = R(1,3) (3.61)

R(3#2) = R(2,3) (3.62)

It should, be noted that the R(k) matrix is not cons:ant

since it depends on range, azimith, and elevation.

2. Filter Initialization

All three filters were initialized with re=asonable

state values fcr position, velozity, and acceleration on the

the fi.st pass through the filter, since it is assumed zhat

43



the GDBS has maintained a good track for sometime prior to

the final leg to the target. Consequently the covariance of

17 error for the initial state prediction vector is not set to

an arbitrarily large number such as 106 , as is often done

when there is little confidence in the initial state values.

Instead 103  is used since it is more consistent with the

covariance of error in good initial state values. This

simulated pass from some other tracking filter to the filter

of interest is realistic and reduces the settling time.

Program constants and constant array calculations

for the Kalman H, 0, A, and Q matrices are set up on this

first iteration. The process noise W is set at an

. arbitarily small number to ensure that the gain matrix will

nct converge to zero and accentuate divergence problems.
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IV. PRESENT&TION OF RESULTS

k. QULITATIVE OBS ERV ATIONS

Seven different filter configurations were ultimately

implemented and evaluated with the GDBS simulation. These

configurations are discussed below and assigned

alpha-numeric symbols for ease of reference.

The sixth order alpha-beta filter, ALFBTA(AB) was

implemented with the simple parameter switching technique

outlined in Chapter 3. However, the heading rate maneuver

detection process proved to be too insensitive to slow

maneuvers and was therefore augmented with a trigger that

reset filter parameters when the heading error exceeded 3

degrees. The results of this change proved to be

worthwhile, as will be shown later.

The next three filters are variations of the six-th order

KALMN1 filter. (K10) is KALMN1 without adaptation, (K11) is

KALHN1 with the process noise adaptation scheme fcr modifing

Q(k), and (K12) is KAL N1 adapted by resetting P(k), the

errcr covariance matrix, as discussed in Chapter 3. Fi I.ers

(K20), (K21), and (K22) are variations of KALMN2 which

correspond to the KALMN1 variants descr-bed above.
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Since the objective was to evaluate the accuracy and

response of each filter in the final phase of bomb delivery,

the simulation was initialized with the aircraft within 90

seconds of the release point, at a speed of 480 knots, and

on a heading within 10 degrees of the target bearing. For

each run, after allowing 5 seconds for the filter to settle,

Tacan target bearing information was prcvided to the pilot

controller. At 15 seconds elapsed time, filter adaptation

was enabled and random maneuvers were begun at 20 seconds.

Five separate runs were evaluated for each filter where the

random maneuvers were ceased at 80, 60, 50, 40, and 30

seconds prior to arrival at the release point.

The following plots were generated for the case where

maneuvers were stopped with a time-to-go of 50 seconds.

Figures 4.1 through 4.21 show true and estimated(connected

symbols) position, velocity, and acceleration trajectories

as functions of time for all filter configurations. Note

that the target position is designated by a circle on the

horizontal trajectory plot. Also representative filqer gain

schedules are included to show the effects of the particular

adaptation process being utilized.
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Figures 4.1 and 4.2 indicate the magnitude of the

maneuver encountered and the good state estimation qualities

of this simple sixth order alpha-beta filter. Notice there

is no significant divqrgence of the estimated trajectory

from the true trajectory throughout the run. Figure 4.3

shows the step gain adaptation at the beginning of the run

in response to the controlled turn to the target heading.

This gain is then reduced after the turn is completed and

before the first random maneuver begins, when the gain is

*again increased.

The trajectory shown in Figure 4.4 contasts sharply with

that shown in 4. 1, showing significant filter divergence for

the nonadaptive sixth crder Kalman filter. fhe significant
lag in velocity state estimation shown in Figure 4.5 results

from the convergent gain properties characterized in

Figure 4.6.

The performance of K10 changes dramatically when i-. is

made adaptive as shown in Figures 4.7, 4.8, and 4.9 for K11

and Figures 4.10, 4.11, and 4.12 for K12. Figure 4.9 shows

ccntinuous gain adjustment in response to perceived changes

in the process noise. Figure 4.12 shows the effect of

resetting the covariance of error in response tc a maneuver.
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Figures 4. 13,and 4.14 show the improvement in state

estimation of the K20 nonadaptive Kalman filter.when the

crder is increased over that of KI0. It is interesting to

note that we see significant overshoot in the velocity

estimate for the first time. Unlike the filtars discussed

thus far, K20 provides an acceleration estimate which can be

seen in Figure 4.15 and accounts for the sensitivity of the

velocity estimate.

Adapting K20 through the noise process technique results

in K21 which produces the position, velocity, and

acceleration estimates shown in Figures 4.16, 4.17 and 4.18

respectively. Figures 4.19, 4.20, and 4.21 prcvide the same

infcrmation for K22, which represents the covariance of

errcr adaptation variant of K23. These last two adaptive

filters show little, if any, apparent improvement over the

nonadaptive version. This observation is supported in the

following section.

B. QUAqTITATIVE RESULTS

A single run, for each filter configuration evaluited

for each maneuver termination time, is not suffici-n - -o

properly determine filter performance over th4 -anq of

possible maeuver trajectories and measurement noise

48
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sequences. Therefore, 30 simulation trajectories per

filter, per maneuver period, were conducted with different

random maneuver and measurement noises sequences generated

for each run. The bomb release signal to the pilot was

assumed to occur at the closest point of approach(CPA) to

the target release point. The average of the resultinq

CPA's for each 30 test runs are shown in Table I. CPA's

greater than 250 feet are classified unsatisfactory and

labled IU' appropriately.

At a glance it is apparent that the adaptive sixth order

alpha-beta filter performs very well in such a dynamic

environment, except when maneuvers are continued very close

to the target. The nonadaptive sixth order Kalman filter is

obviously unsuited by itself, but when made adaptive,

preforms very well, particularly for the process noise

adaptation technique when maneuvers are terminated late in

the target run. The ninth order Kalman filter performance,

both adaptive and nonadaptive, is comparable to the

alpha-beta and adaptive sixth order Kalman filters, but has

problems in close due to its longer settling time. No-ice

that the adaptive variants of the ninth order Kalman have

little effect on that filter's performance, as we surmised

in the last section.
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TABLE I

Release Point Error Table

Alpha-
" Beta Kalman (sixth order) Kalman (n'inth order)

t
rAdptv AgR; Adptv A~;Adptv

TTG AB K1O KlI K12 K20 K21 K22
(sec)

80 20' 46' 38' 39' 30' 30' 30'

60 43' U 42' 37' 43' 391 35'

50 41' U 75' 53' 50' 65' 52'

40 55' U 54' 82' 119' 98' 135'

30 230' U 109' U 247' U U

Table II shows the relativz cost, In computa-ion -me

and memory, to implement KALHN1 and KALMN2 in relation to

ALFBTA.
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TABLE II

Relative Computation and Memory Costs

Alpha-Beta (sixth ord 1

Kalman (sixth ord) 2.9

Kalman (ninth ord) 3.4

The only advantage to implementing the most responsive

variant of KALMN1 would be to reduce the probability of a

GDBS generated abort, due to large predicted bomb impact

4errors, when maneuvers are carried very close to the release

point. Lastly, if the adaptive Kalman identifi.r proved to

be useful in providing deterministic forcing for the Kalman

*' filter model and resulted in improved accuracy and response

over the alternatives presented, the cost in computation and

memcry resources would be even g.eater than we have sesn

here.
! 51
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: -.'-'C******GROUND DIRECTED BOMBING SYSTEM SIMULATION**-*****

C
C

IMPORTANT VARIABLES FIU D /
c TACRRX( TATE TIME) T A/C STATE(l-POSITt2"VEL,
C TACRRY( T T IM i - 3inA~ L) a T El( NRAA
C TACRZ( STATETI AR IAN TERATAC.X( 0 U /C AJ

TAAY(a-T I N A/F CARTElIAN COORD.. TACACZ( - FRAN.
C TCRE(" iT EINCRAFT STA T~ '%,3 ATC". TACAZ( R ENC FRAME.

TACREZ(RR5

TARMXRX N R R, FRAME
T MY M 1 U A/E PSiTIONY1 N R R. FRAME

C TACRMZ - MEASURED A/C POSITICN(Z) IN ROR. FRAME
C RDSFQ - RADAR DATA SAMPLE FREQUENCY.
C DT - RADAR SAMPLE INTERVAL TIME.
C N N-TH ITERAT ION AT SAMPLE RATE DT.
C- . TACHDG - RUE AIRCRAFT(AC) HEADING IN RADAR FRAME.
C TACVEL - TRUE AIRCRAFT VELOCITY IN RADAR FRAME.,,:Z. £ TTG - TIME T GU NTL 0O TT
C HOGERR - DIFERENCE BETWEEN DSRDGT AND TACHOG.

C ELPSTM - ELAPSE TIME IN SECONDS SINCE BEGINNING OF
C SIMULATICN.

SRTMVR VTART MANEUVRS;A/C NANEUVERING CAN BEGIN.
E " STPMVP POP MAN UVE S;/C MANEUVEING 4UST STOP.
C MNVRPT MANEUVERING PILOT.
C CNTLPT CCNTROLED PILOT.
C MODEL -FREE INERTIA MODEL OF A/C WITHOUT WINP
C EFFC .

NKA - AIRCRAFT BANKG IU
NTIIE;.- NUMIER OF T IMS SIMULATION LOOP.

C GTR(Il - RANGE(RNG) FROM A/C TO TGT ALONG DESIRED
c GRCUNO TRACK.
C TGTRAXI
C TGTRRY - TARGET COCRDo. IN ROR FRAME
C TGTRRZI
STWODRR - TRUE WIND DIRECTION IN RACAR FRAME

TWVRR - TRUE W ND VELOCTY IN RADAR FRAME
C TWDRP - EST. WIND DIRECTION IN RADAR FRAME
C TWVRR - EST. WIND VELOCITY IN RADAR FRAME
C TWVRRX - TRUE %INO X-Y VELOCITY COMPONENTS
C TWVRRY
C EWVRRX - EST. WIND X-Y VELOCITY COMPONENTS
C SWVRRY
C X2SIGM
C Y2SJG - PROCESS NOISE VARIANCE

C PINITL - ERROR COVARIANCE DIAGONAL INITIAL VALUE
C GX IC GY - FILTER X,Y,Z GAIN VALUES AT TIME N
C GZI
C I I
C YR FILTER X,Y,Z RESIDUE VALUES AT TIME N

C I AMRIS - RADIAL RESIOU AT TIME N
C
C
C

IMPLICI T REAL (A-H, C-Z),INTEGER( I-N)
C
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DOUBLE PPECI $ XNOSEED
COMMON/DOUBL D/S ED
COMMON/TMRPST/NTACRRX(3,1000JTACRRY(3,1000) ,TACRRZ(

+WhmM8 N/TMCST/NTPTACACX(3,1O000),TACACY(3,1OOO),TACACZI
*3,10 0)
O0MtON/TGTWND/TGTRRXTGTRRYTGTRRZTWDRRTWVRREWDRR,

MM N/PffDY/TB, RTMVRaSTPVVRADY014 NN /TACMX(o6 ,TCM(j00 1 ,TA8RNf( 3R0)
CO 4N/FLT.R/TACREX3 10JT ACR Y( ,000It ,AC!Z (3t

007/ 0188/X N5GMYSJG jjSG36fWVRRWRYGX(

+AykESIOII S 1000),Wll(1000J,.i22(i000iW33(1O00),

5?m~2GO SI 1 ( 2TGTX(11,TGTY(W)TRUACC( 1000)

BNKANG=uo.
DEADZNO0.O
QLDHOE0.O
K=O

TBO
PINITL-1000.

V SRTMVR=2O.
STPM Vp-50.0

NTTM ES=800
SECOD?4D .0
HOG E RRu.O
G-32.1i74049
G2=16.087007
GKI=3.5
GK2=3*5
P I=3.141.592654
OLDHOEsO.0
HOs O 1.OCORS fGMA1OO.
ASIGMA=.001
ESIGMA-.00I.
KFILTRO0
K& QAP7uC
X2 I GM1.
Y2SIGM-1.
Z2S 1GM-I.

C READ INITIAL AIRCRAFT STATES IN AC REF. FRAME.

WRIT9(6 6)
REAO(5t1 ) rCC,)TACACYl1,AC Zit
READ(5 1) TACACX( 11 TACACY(21. TAA Z(1,1)
READ45911 TACA X 391),TA ACY(3 ,1)vTAEAWZ3,

E OITAIN X & Y WIIND COMPONENTS IN RADAR FRAME &ADD TO
C CORRESPONDING A/C INITIAL VELOCITY STATES TO OBTA'N
C INITIAL AIRCRAFT STATES IN RADAR REFERENCE FPAME.
C
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PEAD(5,4 2 GTRRXTGTRRYTGTRRZtTWRRTEVRREWDRR ,EWVRR
TW VRi TWVRR*SIN TWDRR*P/180.0)*1 6 7805556
TWVRRY=TWVRRMCS (TWORR*PUI 8.0 4*1.687805;56
EWVRRXu-WVRR* IN (EWDRR*P 1/ 80e0)*1.687805556
EWM~YsSMVRR*COS( EWDRR*PI/180.0)*1.687805556

IC I~ NEI2)1G TO 3

TA~R =i A 1 A YB{+ AWXR
TACltRZ( 2 , I)ITACAC Z 2 11

GO TO 41
3 CONTINU~

TACRR X I I I :TAAEXI:1 1A RRY 1I, ) TAA
TA RRZ(I,1J=-TACACZ(I11

41 CONTINUE
C

WRlTC(69 1
WR IT(6,6
WRITE(6981 TACRRX(1,1),TACRRY(1,1JTACRRkZ(1, 1)
WRIT1 (6910) ACRRX 9,1 9TACRRY(2,1),TACRRZ(Z,1)
WR TE(6,12) TWDRRtTWVRR
WRiT(69 1 EWCAREWVRR
WRIT 166 R SIGMA 9ASI GMAESIGMA
WRITg 6,18 X2SGMvY2S IGM9Z2SIGM
WIT _( 69IS P NL

WRITE 6921) KFILTR
WRITE(6924) SRMVR

WR T;(69J61 STPMVIR

WRI TE(6531
WRITE(6,601
WRITE (6,63)
WRITE(69651

C DETERMINE RADAR SAMPLE INTERVAL(CT).
DTuI*O/FLOAT( IRDSFQI

C
c PcERFrRM SIMULATION LOOP N-TIMES.

DO 900 N - INTI MES

ELPST4 (N;+) * OT
TIME (Nia ELPSTM

C NOW CALL PLRNOI Ta TRANSFORM RADAR CARTESIAN COORDS
C IN POLAR, ADD WHITE NOISE, AND RETRANSFOR4 INT3 ROR
C CARTESIAN COORDS IN PREPARATION FOR FILTERING.
C
C

CALL PLRNOI(RSIGMAASIGMA,ESIGMARANGEAZMITH,
*ELEVTN)

C
C
C

IF (KFILTR .NE. 0) GO TO 45
CA4l~AFBTA (DT, HOGERR ,TTG)

45 CONTINUE
IF (KFILTR *NEe 11 GO TO 46
CALL KALMNI(KADA~DgSG~AIMPSG~RN~

* GO 0 9'
46 CONTINUE

CALL KALMN2(KADAPTDTRSIGMAASIGMAESIGMARANGE,
6 AZMI Tmf LEVTN tTTG)
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NOW CALL TACAN SUBROUTINE TO OBTAIN HEADING TO FLY
c TO TGT.
c CALL TACAN(TACHOG,DSROGTTACVELtTTGGTRNGHDGERR)

IF IN .GT. 800J GO TO56
IF (MOD(N-10 8) N * 0 GO TO 550

+TCRZ1vNv TAN#ARR(t~ RRY(2N
+TCRX13N)TAR! 9N ACRZ3N)',,
WR E(t8 RE( J ,,f REY(IN) ,TACREZ(

+1 ~ ~ N TACREY2 N) tACRE1NJfSEZ 2,
+TORIEMRA (3NW CRiZ(AN

ERT(6978)TT T iACRMX(N) ,TACRMY(N) ,TACRMZ(Nl
*,HDGERR, 9 D0SAR~EI~R~

W9F#iT6flHGtTA~y698)XEN.,Y N)q L(N),XRES(N)qyRES(4)
eZRSS(N),Wl 1(N),W22(N) ,W33(N)

WRiTE(6, 78) P(NvJtP(N92ZhP(Nt3),P(N,4l,
eP(N,5), 6OW ,p(7)vP(Nv8),P(N,9h

550 CONiNUE
580 C0N31NU~

C
C NO CONTROL INPUT UNTIL FILTER SETTLES.

IF (ELPSTM *LT. 5.)GC0 TO 800
C
C DETERMINE CCNTROL INPUT TO AC.
C
C NO CONTROL INPUT IF TTG IS LESS THAN 3 SECOND OR IF
C CLOSEST POINT OF APPROACH(CPA) HAS BEEN REACHEQ.
C

CALL TTGCPA(NKTTGGTRNGIFLAG)
C
C

Jr ((I~bAG) *EQ. 1) .AND. (ASS(HCGERR) .GT. DEADZN

TACACX1(39N)=O.O
TACACY I39N)=0.0
TACACZ(39NI-0.0

GO TO 800
C
C CHOOSE t4NVRPT OR CNTLPT RESPONSE BASED ON
C MAGNITUDE OF HDGERRAND SRTMVR ANC STPMVR CRITERIA.
C
600 CONTINUE

IF (1ABS(HOGERR)) .GT. .523598776) GO TO.70?PVIIF ((ELPSTM .LT. SRTMVR).OR. (TTG .LT STPV)
+GOTO 00CALL MNVRPT(KII

GO TO 8C0
C CALL CNTLPT SUBROUTINE IF MANEUVER NOT PERMITTED.
C
C
700 CONTINUO

CALL CNTLPT(K2,IhDGERRI
C
C PROVIDE MOCEL SUBROUTINE AC STATES AT TIME N.

800 CALL XMODEL

C MODEL RETURNS STATES IN AC FRAME FOR TIME N+l,
C
C ADD WINO EFFECTS OVER DT TO OBTAIN AC STATES IN
C RADAR FRAMS.

CALL WNDEFF(TWVRRX,TWVRRYDTJ
C
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900 o
I FORMAT(3f10.0)

4 F8RMAT 58X,'CleS SIMULATION@)
6 FOR1MT(//,qXt'INITIAL CONZiTIONS:')
8 F3 M4AT(/Is5 XA/C INI I AL POI ION IN RADAR REFERENCE

10 F'PMATI5 #A/ 3 NIT AL VE 0ITY IN RADAR REFERENCE
+SYSTEMI FTI ,(O 2O31'

12 FORMAT( 5X,'TRUE WIN6 a',1XvFI.39'/', LXtF9.3/)
14 FORMAT 15XEST WIND =a ,IOXtF1O.3'/',jXF9.3//J
16 FORMAT(SX,"4EASUREMENT NQISE VAR ANCES(R MI)A(RAOJ9

*E(RA'31 3 l',3(OXFlO.3)/)
i8 FORMAT(5X, PROCESS NOISE VARIANCES(XvYZ) ',916X,

20 FSMAT 5Xt RCR COVARIANCE DIAGONAL -1 IOXFIO.3//1
21 FORMAT(5X,'FILTER CESIGNATION =8,4X, ii,'J
22 FOR'AT(5X,'FILTER ADAPTATION =O5tl/

24FSR4AT S X,' START MANEUVER -4,1 XFLO..3/1
J6 F RMA' 6X,'SOPMAEUVNER -'T R1'0,lt63/fAt16X,

0 FORMATI '16 SCO ND*Y t6#TCRI
+'TACRRZ1',6X, 'TACRRX2' ,6X,'TACRRY2',6XC,'TACRRZZ',6X,
+'TACRRX3',6X, 'TA(;R Y3 IX'TA$RRZ3'

53 FORI4AT(10' j18XvlTACREX1 ',6X,' TACREY1',6X91TACREZI' ,6X
+,'TACREX2',6X,'TACREVZ' 96N, 'TACREZZ'96X,
*'lTACREX3;1,6XP 'TA CREY3',6*X' TACREZ3')

60 FORMAT0' ,12X fTTG't I ,'ACRMX' ,7X, 'TACRMY',p7X,
e-'TACRM4L' 7X,'I-DGERR' ,7X,'OSRDGT' ,7X,
+'TACHDG',7Xt'TACVEL' 8XI'GTRNG')

63 FORMAT(' 5XX,'-EIO NTXY-AN7X,'-GAIN' 5X,
+'X-RESIOJ' 5X ,5X,.DUO-RES ,bU4,7X,'Wll7X,'W(2,2 1',ix 'W393 )1X'

65 ~ORM4T(110',20X,'PKK11',8XI'PKK221?8XV '"KK33',8Xv
+IPKK44198X,'PKK 5'8Xt'PKK66', 8X,'PKK77',8X,'PKK88'
+98X,'PKK99'///)

75 FOR'4AT(///10F13.4)
78 FORMAT( 13X,9F13'.41

END
SUBROUTINE TACAN(TACHDGDSRDGTTACVELTTGGTRNG,

+HO(E RR)
CI 14PLICIT REAL(A-HO-ZJqINTEGER(I-Nl

013USLE PRECISIO N OSEED
COMt4CN/DOUB LE/C.SESD
COMMCN/TMRR 5T/NTACRRX43,1000),TACRRY(3,10OO),

- .+TACRRZ(3 1000)CO14MCN)TGTwND/TGTRRXTGTRRYTGTRRZTWDRTWVRR,
4EW ORR , EbVRR

COMMON/PILCT/TB SRTMVRSTPMVRDT
CP?4MCN/FILTER/TACREX(3,iOOO),TACREY(3,1000),
CTAC A MT/GtG29GKIGK2

01 =3. 141592654
SWO=EWORR*PI/ 180.0
CtWVm9_VRR*1 .687 80556
TACVEL=SQRT(TACREX(2,N)*TACREX(2,N)+TACREY(2,NJ*

+TACREY(2 N.
* TACHO6 =TRUHDG( TACREX(2 NhTACREV42,N))

TGTDIR=TRUP.CG( (TGTRRX- ACREX(19NJ ),(TGTRRY-

+T'2TQRYI3**2)
TTG=GTRNG/TACVEL
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RETURN
C END

SUBROUTINE TTGCPA(NvKPTTGoRNGIFLAGI
IF 4(T GT. 3.0) *OR. (K .EQ. 0)) GO TO 600

600 CONTINUE
I~(N .LTe 100) OLDRNG=RNG

D IFF N -O LD R G-RNG
IF (T GGT. 10.) GO TO 800

IF JDIFFNC) T7O,4009800
700 IFLAG -1

Kul.
GO TO 9C0

800 IFLAG=1
900 r6NTING

RETURN
END0

C,
SUBROUTINE MNVRPT(KlJ

DnUBLE PRECISION OSEC
COMMON/DOUB~e /OSEED
COMMON/TMACST/N, TACACX( 3,1000 3 ,TACACY( 3,1000) ,

+CflCNI P11 T/TBSRTf4VRiSTPMVROT
COMMON/PARAMT/GtG29GK1 GK2
IF (I- .EQ. I) GO fO 100

90 CDC0.0
N 1=0
PAmGGUBFS( OSEED)
AMXACCU 14. 0*(PA-. 5)
ACCDUR=20.0*EXP( .25*ABS( AMXACC I)

loo CONTINUE
ACCZDUR=ACCCUR-OT
IF (ACCOUR .LE. 0.0) GO TO 90
CMDACC=AM'XACC*(l.-EXP(-OT/TB) ).CL4ACC*EXP(-OT/TB)
AACHOG-TRUHCG(TACACX( 2,NDTACACY(2,pN))
TACACX~ 3,NI-CI4DACC*CC S(AA I4OG *G
tACCY3,N ja-CMOACC*SIN(AACHD2)*G

TACACZ( 3,1000)=0.0
Ki=

END
C
c

SUBROUTINC CNTLPT(KZ, HDGERRI
C GSNERA E CONTROLED PILOT BANKANGLE.
C P HO) IS COMPON NT BAS JD ON ANGLE ERROR HOE.
C P'402 IS CO MPONE NT BA ED ON ANL~ ERROR RATIE HDEDOT.
C OHD IS DESIPED PILOT GENERATEC BANK ANGLE.

DOUBLE PRECISIQN OSEED
COMMON/OCU8tLE/CSEED
COMMON/TMACST/N ,TACACXL 3,1000), TACACY( 3,10 00) 9

+TACC13l OOMT/;GZGKiGK2

?pMMN/Pj CT~j8SRTMVRl TPMV R,0T
OLHD-:K 1) GC TO 200
aNKANG.C .0
'42=0

200 CONTINUE
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H6H 8ERR-OLOHCE)IDT
PH -GK j*H E6 tR
PH4 *HOE OT
CM8 Nf HO N.HD2

FGM AN Gf5 -~ 61 CMANGo5236
I F (COANG *LE. 1.071 CMOANGI.0473

204 ONIN

NKaMOANG*(1.-EXP(-0T/TBJ )+BNKANG*EXP( -CT/TB)204 AACVELsSQRT(TACACX(2,NJ*TACACX(2,N1.TACACY(2,N)*

*TACACY(21~
AACHE6=TRUHDG (TACACX(2,N) TACACY(2,N)J
HDGR AT-TAN (BNKANG J*G/AACVEL
TACACX( 39N)-AAC VEL*HDGRAT*CO$ (AACMCG)
TACACYI 3,N)=-AACVEL*NDGRAT*S iN(AACFDGI
TACACZ(36NI -00
OLDHOE-86G ~R

RETURN
END

C SUBROUTINE XMOEL
DOUBLE PRECISION OSEED
COMMCN/DOUeLE/GSJsED
COMMON/TMACST/No ,ACAC A(3tl000),TACACY(391000)v

+TACACZ(3,1000)
COMMON/PILCT/TBvSRTMVRtSTP4VR OT
CIMMON/PROCES/X2SI~M ,Y2S IGMZISIGM
COMMCN/PARAMT/GGZ ,GKl GKZ,*OIDIMNION P914(6,6) ,ELI6t3 vX(691),U(3,1)tF(6,1)f

4XNI(6tl)iXl(6,pl)
T2=(C C*DT)/2
IF (N .NE. JO TO 160

C CCMPUTE iTA E TRANSTI JN MATRIX(PHI)o
C INITIALIZE MATRIX a 0.0 9 1.0 ON DIAGONAL*

00 130 1=1,6
00 120 Jal 6

IF I .EQ. J) PHI(IJJ=1.0
120 CONTINUE
130 CONTINUE

PH ( 192)aDT
PHI(3,4)=DT
PHI( 596)=DT

C COMPUTE DEL MATRIX(DELJ
C INITIALIZE a 0.0.

00 150 1,
00 140J 3

DEL( I,J) =0.0
140 CNTNUE
150 C U

DEL 1,1 :T2
*D DL 392 3T2

O L(4,2 J=OT
DELI 693) -OT

C

SET UP 'X' MATRIX.
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2(3: )wTACACY( 19N)

X 6*1) TAACZ( ,N)

2CALL PRO0U T SUBROUTINE TO MULTIPLY PHI &X.
CALL PRCCCT(PHlIX,69196*Xl)

C
C SET UP *U' MATRIX.
C

c Uf3v )-TACACZ(3, N)
C
C CALL ADOC SUBROUTIN TO ULIPL DE U. T BTI

CALL PROC(XF,1,6,XN1I
C

C
IP=N41
TACACX(1,IP)-XN1(1v1)
TACAMX29 )N( 1
TACA X(3, P)T MA X(3,N)
TACAEY 1IP)ZXN113:11
TACA Y,29 IP) XNI 4 11
TAEACY 3,1I TACACY(3,N)
TA ACZ( 191P JXN1(5 .11
TACACZ42,IPJ XN1(6911
TACACZ(3 ,IP) TACACZ(3 ,N)

C
RETURN

END
C
C
C
C THIS SUBROUTINE COMPUTES THE MATRIX PRODUCT A*8 AND
C STORES RESULT IN Co

SUBROUTINE PRCCCT(A,8,NvMiLC)
DI MENSION A(L tN) ,8(NtMl PC[LM)

2 INITIALIZE ICI MATRIXa 0.0.

C( 1,41.0.0
170 CONTINUE
180 CONTINUE

C
C MULTIPLY.
C

DO 210 1=191
00 200 J=19N

DC 190 K=I. M
(1,KJ-6( I,K)+A( I J)*8(J9 K)190 CON INUE

lNTJNU S
210 CONJ INUE

EDRETURN

C
C
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SUBROUTINE AD0(AB ,11 1C
DIMENS ION AU4, LI( ,LJ*C(MtL)

C INITIAL Z QC' a 0.0.Of) 215 141
213 COC NUE
215 CONTINUE

C NOW ADD *A' & '8le
C

D0 230 IultM

220 CONTINUE
230 CONTINUE

EDRETURN
C
C

SUBROUTINE WNOEFF(TWVRRXPTWVRRYOT)

+TACACZ(3 1000)
COMMONITMRRST/NTACRRX(3,1000),TACRRY(3,1000),

+TACRRZ(3t1000)

1 CA X(1,1 P)TACACX (19 I)+T*TWVRRX*N
TACRRX(2,lI)TACACX(2,IP)+TWVRRX
TA~ RX 3v P):TACACX13, IP)
TA RPYV119,P P)TA A Y 1IP ).DT*TWVRRY*N
TACRRY(2,I P)-TACACY(2,IPI.TWVRRY
TACRRY(3,IP)-TACACY(3,IP)

TACRR 2,IP)'TACAC :Ip~
TACRRZ(3,IPI=TACACZ(3tIP)
RSETURN

END
C

FUNCTION TRUHCG(XVELYVEL)
PI -3. 141592654
IF (XVEL) 31t41951

31 IF (YVEL) 719111971
41 I= (YV L) 1C14 919121
51 IF (YVIL) 6 1)2!,61 TNYE/VL61 TRUHDGUP /20 -ATNVE/EL

GO TO 131
71 TRUHOG-3.0*PI/2.0 - ATAN(YVEL/XVELI

GO TO 131
91 TRUHOG=PI/2.0

GO TO 111
131 TRUHOGaPI

GO TO 131
III TRUHDG-3.O*PI/2o0

C TO 131
121 TRUHOGO0
131 RETURN

END

C
C THIS SUBROUTINE TRANSFORMS CARTESIAN COORDS INTO
C POLAR IN THE RCR REF. FRAME THEN A4JOS WHITE NOISE ?F
c 0 ME4M AND VARIANCE, RSIGMAASIGMA, AND0 ESIGMA TO IHE
C PANGE, AZIMITH, AND ELEVATION RESPECTIVELY. THESE
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C CONSTITUTE THE MEASURED POSIT OF THE A/C, THESE NOISY
C POLAR N A UREMENT S A RE THEN TRANSFORMED BACK IgT~ THE
C RADAR CARTESIAN SYSTEM IN PREPARAT ION FOR FIL TNGe
C

C SUBROUTINE PLRNOI(RSIGMAASIGMAESIGMARNGPNSAUIPNS,
+ EL VPN S

DOULEPRECISION OSEED

~OMM N/TMRR /Nv ACRRX( 3,1000) ,TACRRY( 3,1000) p
+COMCNIN01 E/TACRMX(1000),TACRMY(1000),TACRMZ(1000)

COMMON/PAR AMT/G,9G2, GK1tGK2
C
C

C SLNTRG-SQRT(TACRRX(1,NJ**2+TACRRY(1,N)**2+
+TACRRZ(1,NJ**2)

AZMITH-TRUI'CG(TACRRX(1tN~jTACRRY( 1 N))
GNDRNGuSQRT(TACRRXA 1 N)**2+T ACRRY( 9 N h**2)
SLVATN=ATAN(TACRRZ( 1 ,N)/GNDRNGJ

R NSLNTRGR*RSI GMA
A=?GNCF (OS EfD)
AZ PNS=AZMI IHA*ASIGMA
E=GGNQF( OSEED)
ELVPNS-ELVATN+E*ESI GM A
TACRMX (N) RNGPNS*COS ( LVPNSJ *SIN AZI PNS)
TACRMY N) RNGPN 5*COS ( LVPNS * *OS (AZ IPN 5)
TACRMZ(N)=RNGPNS*SIN( ELVPNS)
RE TURN

END
C
C
C
C

SUBROUTINE ALrFBTA(CTPHOGERRTTG)
COMMCNITMRRST/NTACRRX(3, 1000),TACRRY43,1000),

+COMMCN/NOISE/TACRMX(I000JTACRMY( 1000),TACRMZ(1000i
COMMCN/FILTER/TACREX(3,1000) ,TACREY(3,1000),

+TACREZ(31,000)
COMMON PROCES/ X2SIGM, Y2SIGMZ2SIGMEWVRRXEWVPRY,

+GX(1000) GY(1O0),GZil0OJRAORES(1000),XRES(1OOO),
*YRES( 1006)tZRES( 1000), Ill( 100) W22(l1000), W33 (1000)9
4.P( 1000,9) ,PINITL

C
DT2=OT*DT

C
IF (N .NE. 1) GC TO 10

C
4C INITIALIZE FILTER.

.4 IFPXKK=TACRMdX N)
FDYKK-TACRkMY NJ
FPZKK=TACRt'ZLN)
FVXKK=TACRRX( 2,N) +ElmVRRX
FVYKK=TACR RY( 2,N) +EWVRRY
PVZKK=TACRRZ129N)
FDXKK 1=FPXKK+OT*FVXKK
FPYKI1FPYKK+OT*FVYKK

4 FPZKK 1=FPZKK+OT*FVZKK
STR GER=0.0
STRGRT=0.0
MVPFLG=O
4VRCNT= 0
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GO TO 9 99
10 CONTINUE

C

C SELECT PARAMETERS FOR FILTERING BASED ON
C MANEUVERING AthD NOISE CRITERIA.

HIGH OR LOW NOISE ENVIRONMENT?

RUFRNG.SQRT(TACRMX(N)**2+TACRMY(N)**2+TACRMZ( N**2j
IF(RUFRNG *GT. 1500.1 GO TO 20

NO SFL G-O
GO TO 30

20 CONTINUE
NOSFIG~l

30 CONTINUE
C
C MANEUVERING?
C IF TTG .LTo 30 SEC ASSUME NO MANEUVERING AND GO ON*
C

IF (TTG *LT* 30s) GO TO 40
CALL STRGICT NOSFLGI-OGERRSTRGERSTRGRT)
C ALLTMNRSSTRGRTIMVRCNT
F- I T*FLUATI MVRt NT) @IGT. 5.01 MVRFLG=0
F ((CT*FLOAT(,4VRCNT)) .LT. -5.0) MVRFLG=0

IF (ABS(HDGERR) .GT. .052359878) MVRFLG-1
GO TO 50

40 CONTINUE

.150 CONTINUE

C FIND ALFA/BETA PARAMETERS
CALL CRSTRK(NOSFLGMVRFLGTTGCALFA.CBETA)
GX (N) =CALFA

C

GYN 0AF

GY (N)=CALFA
C
C FILTER X-CUORC. DATA.
C CURRENT STATES.
C

XR ESOU=TACRMX (N) -F PXKK 1
FPXKK=FPXKK1+CALFA*XRESDU
FVXKI(=FVXKK+CBETA*XRESDU/DT

C
C PREDICTEC STATES.
C

FP XKK1=FPXKK+FVXKK*DT
C
C FILTER Y-COORD. DATA.
C CURRENT STATES.
C
C

YRESDU=TACRMY (N)-FPYKK1
FO YK(=F PYKKL+CALFA*YRESDU
FVYKK=FVYKKC BETA* YRESDU/DT

4 C
C PREDICTED STATES.
C

FgPYKK1=FPYKK+ FVYKK*OT
C
C FILTER Z-COORC. DATA.
C CURRENT STATES.
C
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C
ZRES!)U=TACRtMZ t NJ-FPZKKl
FPZKK=FPZKK1.CAL FA*ZRESOU
FVZKK-FVZK K+CBETA*ZRESOU/OT

C
C PREDICTED STATES.
C

FR LKK1mFPZKK.FVZKK*DT
C

XRES( NI XRESDU
YRESIN):YR SDU
ZRS (N) ZR SOU
RA t ES(N)SIQRT(XRESOU**2+YRESDU**ZZRESDU**21

' ACREXY ,N)uFPXKK
TA CR'(1N ) FPYKK

Rly( IFPZK(
TACqEX( 2,N)=FVXKK
TACREY(2,NJ=FVYKK
TACREZ(2tN)-FVZK(
RETURN
END

C
C
C

SUBROUTINE STRG(OTNOSFLGHDGERRSTRGER,?STRGRT)
IF (NOSFLG -EQ. 1) GO TO 15

AL FA=*0625
BE TA=*0C78125

15 CONTYNU~
AL FA=.3125
BETA= .0C1953125

20 CONTINUE
STRGER- $TRGER+ALF A*(HGRR- $TRGjRj

SRGRTa TR GRT.BETA*(HDGERR- STRG~R
STRGERU STRGER+STRGRT*OT
RETURN

END
C
C
C

SUBR('UTINJ TMNVR(STRGRTMVRCNT)
Ic (AB (STRGRT) .GT. .00872665) Ga TO 10

IF 4MVRCNT-LT. 0) MVRCNT-0
MVRCNT-tdVRCNT. 1

GO TC 30
10 IF (ABS(STRGRT) .LTo .0174533) GO TO 20

IF (MVRCNT .GT, 0) MVRCNT=C
MVRCNT I'VRCN 7-i

GO TO 30
20 MNRCNT=0
30 CflNTINUE

RETURN
END

C
C
C

C SUBROUITNE CRSTRK(NOSFLGMVRFLGTTGCALFACBETA)
IF (NCSOLG .EQ. 0) GO TO 50

IF (MVRFLG *EQ* 01 GO TO 10
C LOW PRECISION (MANEUVERING)

CALFAm*1875
C BETAS. 0078125
GO TO 3
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CHIGH PRECIS ION (NON-1MANV VERING)
IF (TTG LT30 )GOT

C MANUEVRING ITOPD WITH eGT. 30 SEC TO GO.
CA LFA=*03906Z5
CB ET Au 0002441406
GO TO 30

20 CONJ U
C ANUEVERING STOPPED WITH eLT. 30. SEC TO GO.

CALFA-.078125
CBETA-. 0009 765625

30 GO TO99
C LOWNC! $E.

50 CONTIN ~
11 MVRFLG .EQ. 0) GO TO 60

C LOW PRECISION (MANEUVERING)
HLAz.:3;5

GO TC 80
60 CONTINUE
C HIGH PRECISION (NON-MANEUVERING)

IF (TTG .LT* 30.) GO TO 70
C MNVRNG STOPPED WITH 30 OR MORE SEC TTG.

CALFA-.078125
CBETA- .0009765625
GC TO 80

70 CONTINUE
C M NVRNG STOPPED WITH LESS THAN 30 SEC TTG.

CA LFA= .15625
COETA=.0039C625

99 CON1 Nu~U
Rr:TURN

ENO~
C
CSU BRfUT 1NF, KALMN (KAOOTPRSIGMAASIGMAESIGMAtRANGE,

+AL MITHELEVTNTT I
C
C
C

DOUBLE P~kECISICN CSEED
CO14MON/OCUBLE /05EED
COMMrN/TMRRST/N,TACRRX(3,1000),TACRRY(3,1000),

+TACck'Z(3~~~C
COMM"n.'/N61  94CMXC1000),TACRMY(1000),TACRMZ(10O0)
C'MMON/FILTER/TACREX(3, 1000) ,TACREY( 3,1000),

CPMMNCPOC/X2S'GM Y2SIGMZ2SIGM,S WVRRXS WVRRY,
+GX(1000),GY(lC00) GZ 1O00)RADRES(1000itXRES(1000),

+YPESS100IZR5S&16 ?if000)flOJW22(1O00J

DIMENSION Q(b,6)IPKK(6,6htR(66tE(6,a),G(696),

+WKAREA( 18) ,EXlRA3(393) ,XTRA4(3,3hZl61
C
C

IF (N .NE. I I GO TO 25

DG
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p..

IFil3Q J) PKK(IJ)=PINITL

0G( 11;0.

NULL(19J)=0.0

10 CONT N~~
20 CONTINUE

41aX IG?'*X ZSI GM
wZY GM*YZ 1GM

* W3.L2SIGM*Z2SIG4
wxu0.0
%uZ WY
IXFLGu0
IV FLG=0
I;FLG=0
DEL( I 1 10T2
DEL(2:I. IOT
OEL(3,2)=0T2

H( 2,3)21.0

PHI(11 ):1O
PHI12,V2 1*0
PH 1(3931-1.0
PH 1(34) -OT*
PH I( 4q) a a
PH 1(5956)2.
PH I(65,6)zlT
RVAR=RST GMA*R SIGMA
AVAR=ASI GMA*ASIGMA
i ARESIGMA*E SIGMAACR 19)-T ACRMX(1)

XKK( 1)-TA REX

TACRSY(JAi);TACRMY(1)

XKK(3 )=AR X(2,1)
TACREY(l2 l)=TACRMY(2,).EVR

XKKI 4)-rTAC REY(291)

TACRSZ( 2,1)=TACRRZ(ZN)
XKK(6 )='ACREZ(2, 1)

C
25 IF (N oBQ. 1) GO TO 999

25 CONTINUE
C

Z( 1)=TACRMX(N)
Z( 2) TA'.RMY(N J
Z( 3) TACRMZ(N)

C
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RZ=RANGE*RAN GE
CA=mSjAZMIpT I

IEW (1: VTNJ
Esl4LiVTN)

SE2uSE*SE

R( 292 )R2*4 EVAfR*SE2*CA2+AVAR*CEZ*SA2 )+RVAR*CE2PCA2
R( 393):R2*IVAR*CEZ*RVAR*SE2
R( 1921 )RZ* VAR*SE2*SA*CA,4RVAR-R2*AVAR)*(CE2*SA*CA)

1,3 l:(R4 A!P2*E VAR )*SE*Cf*SA
R(3,1)IR(13)
R(29,31 (RV R-RZ*EVAR)*SE*CE*CA
Rl 39 2)OR(2,93)

C
C
C

FK 1(1 3-0 *
FK 1(2)=0.0
FK IC3 1=0.0
FK 1.(4)= .0
FK1.( 5 )=0.0
FK1(6)=O.0

C
C IF (KAD .NE. 0) GO To 29

w( 1, 1-Wi
W(2,2 I-W2
W(3,3 I-W3
GO TC 34

29 CflNTINUE
IF (KAC .NE. 1) GO TO 31

CALL AOPTVl.(N,6 ,l2O ,WIW2 ,W3,TACREXTACRSYTACREZi

GO TC 34
31 CONTINUO

19 (fT, .LT. 20.3 GO TO 33
XRS=XRES (N-I)
YR SYRE SEN-1)
ZqS=ZRES(N 1)
CALL AOPTV2(6,XRS,IXFLGYRSIYFLGZRSIZFLGPKKI

33 CO)NTINUE
W(l, 1l)W
W(2, 2)-W2

34 CON1 4 NUE
wllll=siC1, 1)
h22(N)a4(2,2)
W3 3(M) a W (3,3)

C GENEPATE Q-MATRIX.
CALL QUADPS(Dc LvW9NULL9696vQ)

C
C
C X(K/K-1IJPHI(KK-I)*X(K-I/K-Ii+F(K-LI

co 210 171,6
XKKK( T)=FK1( I)
DO 200 Jm1,6

4 XKK1(1)=XKK1(I)+PHI(ItJJ*XKK(J)
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* OO COJNTNUE

P(K/K-1)mPHI(K/K-)*PK-/K.1)*TRANSPOSE(PiI)Q( K-1)
CALQAP(HvK9vvvKl

C
-:C G(K)iP(K/K411*H1K)*INV(H(K)*P(KtK-1)*TRANSPaSE(HI4R(K)iCALL QUA PS HPKKltR,6,6 ,EXTRAll

00 212 1 =193

00 x'TRA4(I ,J) aEXTRAI (1,jI
211 ONINUE
212 CONTINUE

DO ~~;~ ,

XT (I 9J )=0.00
8C 220 K, 6

EXTRA2( I J)uEXTRA2(IJI.PKK1(IK*H(JKI
220 CONTINUE
225 O U
230 CONTINUE

SINVERT EXTRA1 AND MULTIPLY BY EXTRA2.
CALL LINV2F(EXTRA4,3,3,SXTRA3,IDGTWKAREA,!IERJ
CALL PRCDCT(EXTRA2,EXTRA3,393,69Gj
Y(N G(392

C X(K/Kf'iXK !?IG(K)*(Z(K)-H(K)*XlK/K-LI)

00 240 J -1,6
EXTRAI( I,1)=EXTRA1(I,1)-H( ItJ)*XKK1(JI

240 CONT INUE
250 CONTINUE

RADRES(N)-SQRT(EXTRA1(1,1J**2+EXTRAI(Z,1)**2+
*EXTR &1( 341 **2
XRES(N)a..X RA 111 ,1j
YR ES(NX TRAI(2,1)
ZR E (N ~ TA13,1)
00 270 1;)1,6

XKK(1 )XKKI(I)
D0 26C J-1,3

XKK(I!PXKK(I).G( IJ)*EXTRA1(J,1)
260 CONTINUE
270 CONTINUE

TACRSX4 1,N)=XKK( 1)
TACREX( 2,N)aXKK(2J
TA CRE Y (I, N XK K (3 J
TACRqY( 2?N DXKK441
TACIfZ( 1,N )=XKK(5)
TACREZ1I29N)OXKK(6)

C P(K/KJUO(K/K-11-G(K)*H(K)*P(K/K-1)
CALL PRC CT (GvH96 ,6,69EXTRAl)
C&LL PRCDCT4EXTRA1,PKKI,6,6,6,EXTRA2I
DO 290 1;196

280 CONTIN.YlIJERZIJ
290 CONTINUE

*999 CONTINUE
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P(N,3)-PKK( 3,3)
*(N94):PKK(4,4)P(N95) PKK(5 5)
P(N96)-PKK(6,6)

ENDC
SUBROUTINE KALMN2(KADOTRSIGMAASIG4AESIG4ARANGE,

*AZMI'H, ELEVTN*TTGJC
DOUBLE PRECISION OSEED
COMMON/OCUB LE/OSEE0
COMMON/TRRST/NTACRRX(3,1000ITACRRY(3,l0001,

*TikCRRZ(311jiOO
COMM')N/Ng~ TAJRMX( 1000),TACRMY (10OO) TACRMZ£1000I
COMMtON/F ILT R/T CREX (391000i TACRcY3 ,100019

CC

IDGTG

C

IF (I NE.. J1 )KKGOTOI25

G(I JT*0T/.0

NULL( 0.0 u0.
10 1 COT~J199

Rivx=0.0.

NUYFLG=OO.
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191) =0

L4:2luDT3
592 gT2
70 M amOT3

H19 )-.0

PHT(4,6)-DTZ

PHIo 1 8)OT2
P9414 ,9):DT2
PH 38 1=.0

PHAI= (44)6 0M* IM

PHCE 1561:TARX1
PH 6R6(1.0
PH 2 N ) sTC~x2,)EVR

PHKK(3)-TR43

XKKAR-T IGAR S I GN)
TACREZ(2 N)-TAUCRMXl

XKK(8)-TACREZ(3,N) 2N
XKK(4)=TACTRZ(3,NJ

Y ( NE.) GO TO 2999EWR

ZI 1)-TACREJ N)

C
C

25 s CNINUEAM H

CSC)TS( ELSVN)

Z(2)=TCRMY90



SSaSTNf LEVITN)

~E2:SE*Ss
C

CR(itl)nR2*(EVAR*SE2*SA2+AVAR*CE2*CA2),RVAR*CE2*SA2
A( 21: )R2 EVAR*SE2*CA2*AVAR*CE2*SA2j+RVAR*CE2*CA2
R1393 3u2*EVA*2+RVAR*SE2

9(12)nR2*EIVAR*SE2*SA*CA*( RVAR-R2*AVARJ*(CE2*SA*CAI

R(, 93: (AVAR-RZ*EVAR)*SE*CE*SA

A1293):((VRTP2*EVAR)*SE*CE*CA
C 9 ) 9

C
C

FK1(1 )zQ*0
FK1(31:O.O
FKI(43a.
FKI(5)-O.O
FK 1(6 )=* 0

FK1(7)u0.0

* C
C

IF (KAD *NE* 0) GO TO 29-
W(1,1j=Wl
W(2,21-W2

* GO TC 34
29 CRNTINUS

IF (KAD .NE. 1) GO TO 31
CALL ADPTV 1(N99l20, Wl9W2tW3, TACREXTACREY, TACREZI

GO TO 34
31 CONT!NU!

IF q TXTG (-1 GO TO 33
YRS-YRES (N-i)
ZRS=ZES(N-1)
CALL AOPTV2(9,XRSIXFLGPYRSIYFLGZRSIZFLGPKK)

33 CONTINUE
W4 1,1)zwl
W(292)=W2
Wd(3 3)-W3

34 CONTINUE
Wll(N)-W(1, 1)

CGENERAT= Q-MATRIX.
C CALL QUJAOPS(DEL#WtNULL,9,99Q)

C XlKIKL1)mPHj(K:K1)J*X(K"1/K1)+F(K-1)

90 200 J 199

* 200 Cr3NTINUE
210 CONTINUE~
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SP(K/K-11-PNI(K/K-1)*P(K-/K-I*TRANSPOSE(PHI)4Q(K-1J
CALL QUAOPS(PHItPKIKQv9t99PKKII

G(K)uP(K/K- 1)*H( KI*INV(H(K)*PIKK-J )*TRANSPOSE(H).R(K)J
CALL QUACP S (H*PKK19R*9,99 EXTRA J

*DO 22 j 019
211 CON INE' "

212 CONTINUE

220A CON=EXR2 ,J).PKKI(IPKJ*H(JK)
225 CONINUE
230 CONTINUE

C INVERT EXTRAl AND MULTIPLY BY EXTRA2*
CALL LI NV2F(EXTRA4,3,3tEXTRA3,IDGTWKAREAIERI

* . CALL PROOCT(EXTRA2,EXTRA3,3,3t9,Gl
GX NI:G(191)
GZ N) G(7 1C X(K/KJ X(K/K- )+G(K)*(Z(K)-.4(K)*X(K/K-J))
00 250 !s1f9

EXTRAi !1)=Z(I)
DO 240 J 1,99

EXTRA1(Iv1)zEXTRAl(IpIJ-H(IJ)*XKK1(J)
240 CONTINUE

250 R SYNISQRT(EXTRA(11**2+EXTRA1(291)**2.

DO 27T0 1,,99
XKK(I a XKKI(I)
DO 260 JinI,3

XKNKNU )XKK(I)*G(IJJ*EXTRA1(J,1)
260 OTN
270 CONTINUE

TA CRS X( 1, N J-XK K( 11
TACREX( vN -=XKK( 2TA R9X iqN iXKK(3

TACR Y( 2:N )=XKK(5)
TACREY( 3,N)=XKK( 61
TACRSZ( 1,NfrXI(K(7)
TACREZ (2,N)-XKK(8)
TACRS Z ( 3,vN -XKK(9)

C
P(K/K)=P(K/K-1 1-G(K)*H4K)*P(K/K-1)

CALL PROCCT(EXT AiJIK,9w9v9,EXTRA2)
00 290 IMI99

Do K8 (I71jJ2PKK1(IJJ..EXTRA2(IJ)
280 CnNTINUE
290 CGNTIc

* 999 CONT INU~
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Pf 911OPKK 191)

P1:UPKK 4:t4

P(N,7lsPKK( (7
* Pt N#S:PKK( :8

C15 FORMAT(* v,'G(lv,,'t%'I-*,=lF20ol01
RETURN
END

C
C
C

SUBROUTINE QUA0PSIXvtR9MN C)

00 40314
0 310 Jul 1

DO OOKaLt
00 100 lal ,N

100 l*XIK)*HlKtLJ*X(JL1
200 CTIN
300 CNTINUE
400 CONTINUE

RETURN
SNO

C
C
C

SUBROUTINE AOPTVI(NtI3tJSTARTW1,WZW3,TACREXTACREY,
4TACR EZ W)

l~TACR IN T.ACR IX(3ifj001:TACREY(3vlOO0)p
I 5TATE.I 3/3
IF (N .LT. JSTART) GO TO 27

WXU8.O*(TACREX(2ISTATEN-113-TACREX( ISTATEtN-2))
WY~e. CTACREY(ISTATEN-1)-TACREY(ISTATEtN-2JI
WZ=88 *4 TACREZllSTATEtN-1) TACREZ(ISTATEPN-2)J

27 CONTINUEWx=0 60
WY8.0

35 CONTINUE
IF ( PATE .EQ. 3) GC TO 37

W(1,l)-w1+( WX*WXJ/3.
W(2t2)nw2+(wY*WY)/3*

LGOT I
*~ ~ W(2,Z=h2*(W *WY /81.

Wfivfl=W3+( WY*WZ 1/81.ii41 CINTINUE
END

C

SUBRO)UTINE ADPTV2(NORDERXRESIXFLGYRESIYFLGLRES,
SYZF IO1N PKK(NCROER,NORDER)
RESET-100.
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CALL 81AS(XPESilXFLG)81GTO0
IF (A S( IXFLG .LT 8)GTO1

PKK(19I)=R E T
PKKfZ 6  IST RESET

10 ~ J (O4 N POR ._g. 9) PKK(3,3)RET
CALL BIAS (VRES IYFL GJ
IF (lABS I!YFLG * LT 8)I0GJ0TO214

IF (NORCER *EQ. 9)
PKK3:3IR1IT

GO to 14
12 CONTINUE

PKK KK454:R jjBT
PKK (6,6)-RESET

14 CONT INUE
C ALL BIASIZRE S IZFL G

I IAS (IZFLG * LT 8) GO TO 20
IF (NOROER *EQ. 9) GO TO 16

PKKI (5,5) .ESET
PKK 6,6 R -RST
GO TC 20

16 CONTINUE
PKK(7,7 I-PESET
P KK( 8,8)=RESET
PKK(9,9 )RESET

20 CONTINUE
RETURN

END
C
C

SUBROUTINE SIAS( RESIOUtIFLAG)
IF CRSS5100) 10,20,30

10 IF (jFkAG 9LE* 0) GO TO 12

GO TO 40
12 CCNT INUE-FA-

So JLAG-IFA-
1'. GO 40
20 IFLAG=O

GO TO 40
30 IF (IFLAG .GE. 0) GO TO 32

IFLAG20
GO TC 40

32 ~ CNTINUE
ir-LAGa1 FLAG+l

40 CONTINUE
RETURN

END

49



LIST OF REFERENCES

1. Lentz, R. E.,, Is veset ofAN/P-27 gits an
Control Technies# Naval Postgraduat 5* ol C 00 ,

2. singer, R. A., S4iaigotma ggisFl

*3. Ben-dict, T. R. and Bordner, G. 1., nXtbesj s

e ruIary -L"2 Trnsactins on Automati.c F;ntrof

4. Quigly Anthony L. C. j evelopmn of a Simple

* .: algren, ir ,Dceaber 1978.

5. Clark, B. L eelpmn ~ofa AdativeK man Tret,

Vi.rgi.nia, March 1977.

6. Aldrich, G. T. and Krabill, W. B., An & oication of

conference, S nford, Caiforia, August 1972.

7.~ oal L. M., An Ada ti.ve Kalman Identfie. ta dIt

95



R1-A26 878 AIRCRAFT STATE ESTIMATION FOR A GROUND DIETDBOBN ,
SYSTEN(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
J A JAUREGUI DEC 82

UNCLASSIFIED F/G 17/9 NI'liIi



-o 
. -

12.0

1.25 11.4t 1.6
11W .Va

• " MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU 
F STANDARDS- 1963-A

11111

s. . ....... .. - .---. .-: ..--.- -,'.. " .,.. ;;:. -. -.' -";'; "-' '. ." . " -.- . ..- . ;wu. :".2



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
ClmeroniStation
A exanria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, Ca lifornia 93940

3. Depart'.ent Chairman, Code 62
Department of Blec tigal Engineering
Naval Post a uate school
onterey, California 93940

-. Professor H. A. Titus, Code 62Ts 2
Department of Electrical Engineering
Naval Postgraduate School
flonterey, California 93940

5. Capt. J. A. Jauregui I
.lapine Aviation Detachment
Point Mugu, California 93042

9

-.. 96

Io



",..-FILMED

'D-TI c


